III B.Tech - II Semester – Regular Examinations – JUNE 2022

WATER RESOURCES ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

PART – A

- 1. a) Draw non recoding type rain gauge and its components.
 - b) What do you understand unit hydrograph?
 - c) Differentiate between specific yield and specific retention.
 - d) Define Duty & Delta?
 - e) Write short note on regime channel.

PART – B <u>UNIT – I</u>

- a) Explain the methods to calculate average rainfall over a basin.
 - b) Estimate the daily evaporation from a large reservoir from the following data.

Water surface temperature = 28° C, Air temperature = 30° C, Atmospheric pressure = 766 mm of mercury, RH = 42%, Wind speed at 0.5 m above ground level = 7.5 m/s.

OR

6 M

6 M

- 3. a) Discuss any two automatic rain gauge stations with help of neat diagram.
 - b) The rainfall rates for successive 30-minutes intervals upto 4 hr are given below. If the surface runoff is 3.7 cm, determine Φ and W indices.

Time	0	30	60	90	120	150	180	210	240
(min)									
Rainfall	0	1.4	3.9	4.1	3.8	2.8	2.0	1.8	0.9
intensity									
(cm/h)									

6 M

6 M

6 M

<u>UNIT – II</u>

- 4. a) Derive Unit Hydrograph from complex storms.
 - b) The following direct run-off hydrograph resulted from three successive 6 hours periods of rainfall having runoff estimated as 2, 4 and 3 cm respectively: Derive and plot a 6 hour unit hydrograph for the basin having area of 103 sq.km.

Flow(cumec) 0 23 76 80 182 143 174 85 52.5 25 9 6 0	Time (hr)	0	3	6	9	12	15	18	21	24	27	30	33	36
	Flow(cumec)	0	23	76	80	182	143	174	85	52.5	25	9	6	0

OR

- 5. a) What are the methods of computing run-off from a catchment area? Explain.
 - b) The ordinates of a 4 h UH of a basin of area 302 km² measured at 1 h intervals are 6, 36, 66, 91, 106, 93, 79, 68, 58, 49, 41, 34, 27, 23, 17, 13, 9, 6, 3 and 1.5 m³/s respectively. Obtain the ordinates of a 3 h UH for the basin using the S Curve technique.

6 M

6 M

6 M

<u>UNIT-III</u>

4 M

6. a) Differentiate between confined and unconfined aquifers

with a neat sketch.

b) The discharge from a fully penetrating well operating	
under steady state in a confined aquifer of 40 m	
thickness is 2150 litres/minute. The drawdowns	
observed at two observations wells located at 15 m and	
150 m from the well are 3.2 m and 0.28 m respectively.	
Determine the transmissibility and the permeability of	
the aquifer.	8 M
OR	

OR

7.	a)	Derive an expression for discharge from a well in	
		unconfined aquifer.	6 M
	b)	Discuss different types of wells in detail.	6 M

$\underline{UNIT-IV}$

8.	a)	Define irrigation. What is the necessity and importance	
		of irrigation?	6 M
	b)	What are soil moisture constants? Explain in detail.	6 M
		OR	
9.	a)	What do you understand Duty and Delta? Explain the	
		factors affecting Duty.	6 M
	b)	After how many days will you supply water to soil	
		(clay loam) in order to ensure efficient irrigation of the	
		given crop, if	
		Field capacity of soil = 27%	
		Permanent wilting point = 14%	
		Dry density of soil = 15 kN/m^3	
		Effective depth of root zone = 75 cm	

Daily consumptive use of water for the given crop =	
11 mm.	6 M

$\underline{UNIT} - \underline{V}$

10. Design an irrigation canal to carry a discharge of	
16 cumecs.	
Assume N = 0.0225 , m = 1.05 and B/D = 5.7 .	
Assume suitable data if necessary.	12 M
OR	
11. a) Classify irrigation canals? Explain the classificat	tion
based on the discharge and its relative importance	ce. 6 M

6 M

b) Explain Lacey's silt theory.